
DSA - Lecture 1 Note
Data Structures and Algorithms IT1170

Introduction to Algorithms
1. What is an Algorithm?
An algorithm is a step-by-step procedure to solve a specific problem. It is a set
of instructions that take an input, process it, and produce an output.

Example of an Algorithm (Sorting Numbers):
Input: 3, 1, 7, 2, 9, 8, 5, 4, 6

Output: 1, 2, 3, 4, 5, 6, 7, 8, 9

Steps to Sort (Selection Sort Example):
� Find the smallest number in the list.

� Swap it with the first element.

� Move to the next position and repeat until the list is sorted.

Characteristics of an Algorithm:
Definiteness: Each step must be precisely defined.

Finiteness: Must complete in a finite number of steps.

Effectiveness: Each step should be simple enough to execute.

Input & Output: Must take at least one input and produce at least one output.

2. Properties of an Algorithm
A well-defined algorithm should have the following properties:

Correctness: Produces the right output for every valid input.

DSA Lecture 1 Note 1

Unambiguity: Every step must be clear and well-defined.

Generality: Must work for all possible cases.

Simplicity: Easy to understand and implement.

Efficiency: Should use the least amount of time and resources.

Termination: Must stop after a finite number of steps.

3. Applications of Algorithms
Algorithms are used in many areas of computing such as:

Data Retrieval Searching and fetching information from databases.

Network Routing Finding the fastest path in communication networks.

Sorting & Searching Used in databases and e-commerce.

Artificial Intelligence AI Machine learning and decision-making.

Graph Algorithms Used in GPS navigation and shortest path calculations.

4. Pseudocode
Pseudocode is a simplified way of writing an algorithm in a format that
resembles a programming language but does not follow strict syntax.

Rules of Writing Pseudocode:
Uses plain English for easy understanding.

Proper indentation for readability.

Uses loops and conditions explicitly.

// is used for comments.

= is used for assigning values.

Example: Find the Maximum of Two Numbers

DSA Lecture 1 Note 2

BEGIN
 INPUT a, b
 IF a > b THEN
 PRINT a
 ELSE
 PRINT b
 ENDIF
END

5. Algorithm Analysis
Algorithm analysis helps determine the efficiency of an algorithm in terms of:

Memory Usage: How much space is required?

Number of Steps: How many operations are performed?

Execution Time: How long does it take to run?

Why is Analysis Important?
Helps in comparing different algorithms.

Predicts runtime for larger inputs.

Optimizes performance for better efficiency.

Types of Cases in Algorithm Analysis:
� Best Case: Minimum steps required (fastest execution time).

� Worst Case: Maximum steps required (slowest execution time).

� Average Case: Expected number of steps for random input.

6. Methods of Algorithm Analysis

1. Operation Count Method
Counts selected operations (e.g., additions, multiplications, comparisons).

DSA Lecture 1 Note 3

Helps understand which operations are expensive.

Example: In sorting, the number of comparisons and swaps are counted.

2. Step Count Method (RAM Model)
Assumes a single processor.

Each basic operation (+ , , = , etc.) takes one step.

Each memory access takes one step.

Formula: Running Time Sum of Steps.

Example of RAM Model Analysis:

n 100 // 1 step
n = n 100 // 2 steps
PRINT n // 1 step

Total Steps: 1 2 1 4

Example: Printing Numbers from 1 to 10

i 1 1 step
WHILE i 10 11 steps
 PRINT i 10 steps
 i = i 1 20 steps

Total Steps 42

Example: Printing Even Numbers from 10 to 20

FOR i 10 TO 20 STEP 2 6 steps
 PRINT i 6 steps

Total Steps 12

7. Problems with RAM Model

DSA Lecture 1 Note 4

Step count varies between different hardware architectures.

Complex algorithms (e.g., sorting algorithms) require more advanced
analysis.

Some operations take different times in different machines (e.g., multiplication
may take longer than addition).

8. Complexity of Algorithms
Algorithm complexity is measured using Big O Notation.

Common Complexities:

Notation Complexity Type Example

O1 Constant Time Accessing an array index

O(log n) Logarithmic Time Binary search

O(n) Linear Time Scanning an array

O(n log n) Log-Linear Time Merge Sort

O(n²) Quadratic Time Bubble Sort

O2ⁿ) Exponential Time Recursive Fibonacci

9. Summary
Algorithm: Step-by-step instructions to solve a problem.

Properties: Must be correct, simple, and efficient.

Applications: Used in sorting, searching, AI, networks, and databases.

Pseudocode: Writing an algorithm in structured steps before coding.

Analysis: Measures efficiency based on time and memory usage.

Complexity: Helps understand how an algorithm performs as input size
increases.

DSA Lecture 1 Note 5

